Using Grammatical Roles to Improve Statistical Machine Translation
نویسنده
چکیده
Statistical machine translation systems often struggle to preserve predicateargument structure. We present a new hierarchical machine translation model that explicitly captures the grammatical roles taken on by the words and phrases being translated (e.g., subject, object, and indirect object). Although existing hierarchical and syntax-based grammars can capture how many arguments a predicate takes, they have limited awareness of what should fill the argument slots. This results in difficult to interpret translations with scrambled predicate argument relationships. Our model adds grammatical role typing to the translation rules that helps preserve and correctly order predicate-argument structures. We find that grammatical typing systematically outperforms both traditional hierarchical and syntax augmented models on Chineseto-English translation across a variety of NIST MT evaluation sets.
منابع مشابه
Machine Translation with a Stochastic Grammatical Channel
We introduce a stochastic grammatical channel model for machine translation, that synthesizes several desirable characteristics of both statistical and grammatical machine translation. As with the pure statistical translation model described by Wu (1996) (in which a bracketing transduction grammar models the channel), alternative hypotheses compete probabilistically, exhaustive search of the tr...
متن کاملA Neural Network Architecture for Detecting Grammatical Errors in Statistical Machine Translation
In this paper we present a Neural Network (NN) architecture for detecting grammatical errors in Statistical Machine Translation (SMT) using monolingual morpho-syntactic word representations in combination with surface and syntactic context windows. We test our approach on two language pairs and two tasks, namely detecting grammatical errors and predicting overall post-editing effort. Our result...
متن کاملDiscriminative Reranking for Grammatical Error Correction with Statistical Machine Translation
Research on grammatical error correction has received considerable attention. For dealing with all types of errors, grammatical error correction methods that employ statistical machine translation (SMT) have been proposed in recent years. An SMT system generates candidates with scores for all candidates and selects the sentence with the highest score as the correction result. However, the 1-bes...
متن کاملA Multilayer Convolutional Encoder-Decoder Neural Network for Grammatical Error Correction
We improve automatic correction of grammatical, orthographic, and collocation errors in text using a multilayer convolutional encoder-decoder neural network. The network is initialized with embeddings that make use of character Ngram information to better suit this task. When evaluated on common benchmark test data sets (CoNLL-2014 and JFLEG), our model substantially outperforms all prior neura...
متن کاملUsing Parallel Features in Parsing of Machine-Translated Sentences for Correction of Grammatical Errors
In this paper, we present two dependency parser training methods appropriate for parsing outputs of statistical machine translation (SMT), which pose problems to standard parsers due to their frequent ungrammaticality. We adapt the MST parser by exploiting additional features from the source language, and by introducing artificial grammatical errors in the parser training data, so that the trai...
متن کامل